Constructed, Augmented MaxDiff Method and Case Study

Chris Chapman, Principal Researcher, Chromebooks Eric Bahna, Product Manager, Android Auto

August 19, 2019
International Choice Modeling Conference, Kobe
Slides: https://bit.ly/2NfWPEA (2 N f [foxtrot] W P E A)

"I wish that I knew less about my customer's priorities."

"I wish that I knew less about my customer's priorities."

- No Product Manager Ever

Customer Input Becomes Feature Requests

Customer comments

Individual conversations

Usability studies

Surveys

Support forums

Conferences

Customer	Feature Request (FR)	Priority
CustomerA	FR1	P1
CustomerA	FR2	P1
CustomerA	FR4	P1
CustomerB	FR2	P0
CustomerC	FR3	P1
CustomerD	FR5	P1

Sparse, local data → global prioritization decisions

	FR1	FR2	FR3	FR4	FR5	FR6
CustomerA	P1	P1		P1		
CustomerB		P0				
CustomerC			P1			
CustomerD					P1	

Dense, global data → global prioritization decisions

	FR1	FR2	FR3	FR4	FR5	FR6				
CustomerA	P1	P1		P1				Rank	Feature	Priority
CustomerB		P0						1	FR4	P0
CustomerC			P1					2	FR2	P0
CustomerD					P1		PMs	3	FR5	P1
	FR1	FR2	FR3	FR4	FR5	FR6		4	FR6	P1
CustomerA	16	11	17	21	24	11		5	FR1	P2
CustomerB	26	2	8	25	12	27		6	FR3	P2
CustomerC	5	15	6	42	23	9				
CustomerD	3	11	8	28	23	27				

We often use MaxDiff surveys to prioritize users' feature requests

	Most Important	Least Important
i13 description	0	0
i16 description	0	0
i34 description	0	0
i9 description	0	0

Click the 'Next' button to continue...

Rank	Feature	Priority
1	FR2	P0
2	FR1	P0
3	FR4	P1
4	FR5	P1
5	FR3	P2
6	FR6	P2

But: Some Problems with Standard MaxDiff

- Data Quality & Item relevance
 - Larger companies → more specialization
- Respondent experience
 - "Tedious" and "long"
- Inefficient use of respondent input
 - Wasting time on irrelevant items
 - More valuable to differentiate amongst "best" items

Some other MaxDiff Options

• Adaptive MaxDiff (Orme, 2006):

Tournament-style progressive selection of items. More complex to program, less focused at beginning of survey. By itself, doesn't solve "I don't do that."

• Express MaxDiff (Wirth & Wolfrath, 2012):

Selects subset of items to show each respondent. No insight at individual level on non-selected items. Addresses a different problem (long item list).

• Sparse MaxDiff (Wirth & Wolfrath, 2012):

Uses all items from a long list per respondent, with few if any repetitions across choices. Low individual-level precision. Addresses long item lists.

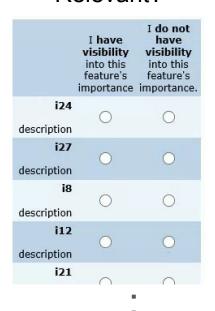
Bandit MaxDiff (Orme, 2018):

Adaptively samples within respondent based on prior responses, sampling more often for higher preference. Achieves better discrimination among preferred items with potentially fewer tasks.

Constructed Augmented MaxDiff (CAMD)

CAMD Adds Two Questions Before MaxDiff

"Relevant?"



Yes → Add to constructed list

"Important at all?"

	At least somewhat important	
i9		0
description	0	
i13	0	
description		
i4	0	0
description	0	0
i24	0	0
description		
i29	0	0
description		
	At least	

No → Use to augment data, save choice time

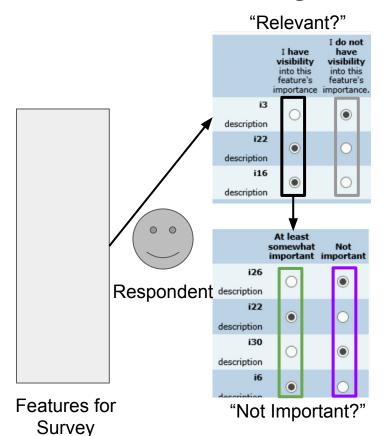
"Most & Least Important?"

	Most Important	Least Important
i13 description	0	0
i16 description	0	0
i34 description	0	0
i9 description	0	0

Click the 'Next' button to continue...

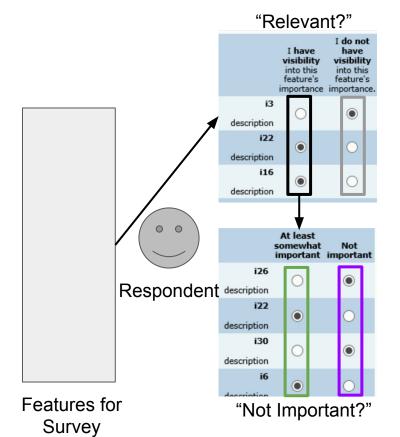
MaxDiff can use same task structure for all

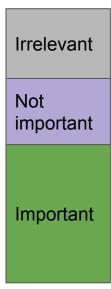
Constructed, Augmented MaxDiff

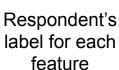


Respondent's label for each feature

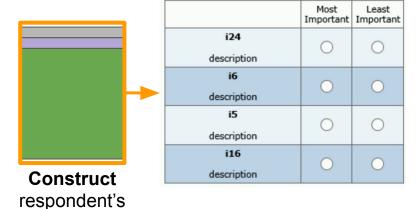
Constructed, Augmented MaxDiff



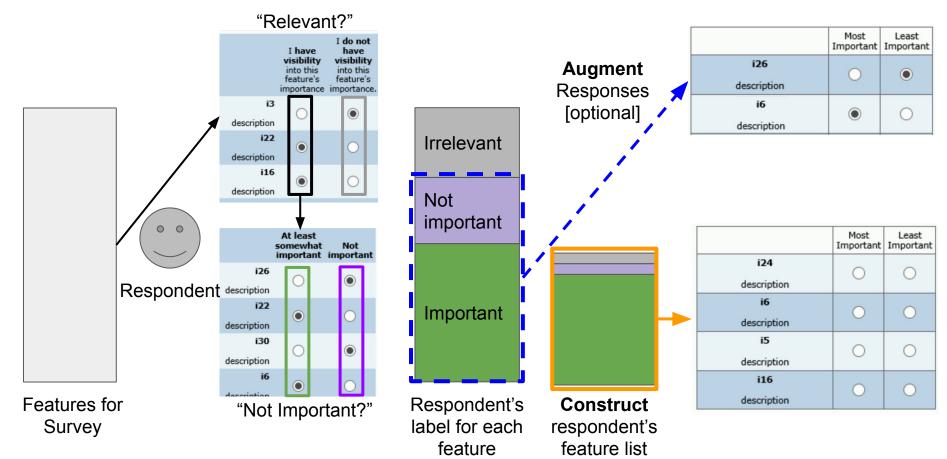




feature list



Constructed, Augmented MaxDiff



Threshold vs Grid Augmentation

For *Relevant* but *Not Important* items, we add implicit choice tasks:

```
A, B, C: Important
```

D, E, F: Not important

Full Grid augment

```
A > D
```

A > E

A > F

B > D

B > E

B > F

C > D

C > E

C > F ... rapidly increases and augmented "tasks" may dwarf actual observations

Threshold vs Grid Augmentation

For *Relevant* but *Not Important* items, we add implicit choice tasks:

A, B, C: Important

D, E, F: Not important

Option: Recommended:

Full Grid augment Threshold -- adds an implicit, latent "threshold" item

A > D A > Threshold

A > E B > Threshold

A > F C > Threshold

B > D Threshold > D

B > E Threshold > E

B > F Threshold > F ... represents observed data with smaller addition of tasks

C > D

C > E

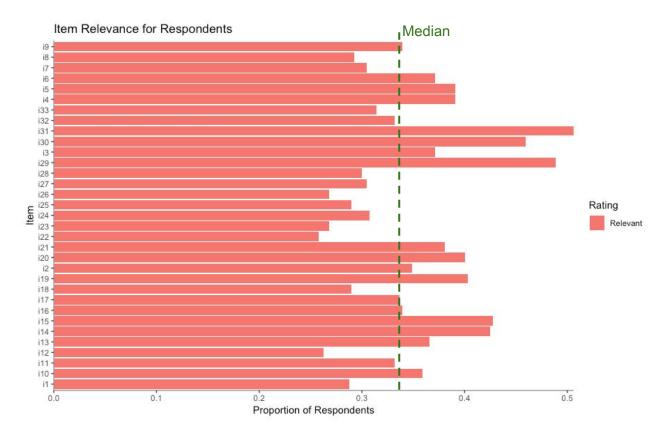
C > F ... rapidly increases and augmented "tasks" may dwarf actual observations

Results

Study with IT professionals

N=401 respondents, K=33 items

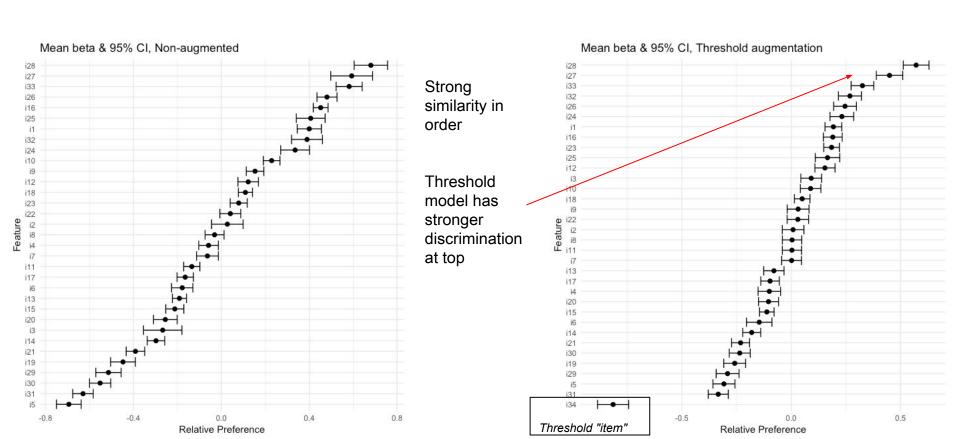
Results: 34% of Items Relevant to Median Respondent



Results: Before & After Augmentation

No Augmentation

Threshold Augmentation

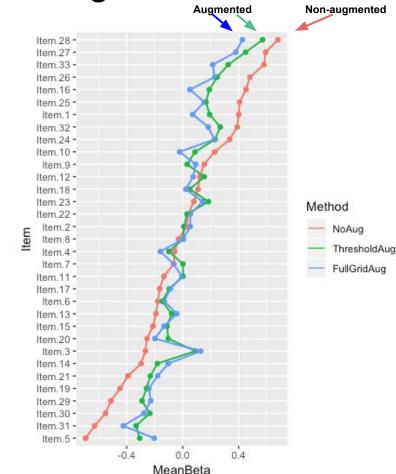


Results: Utilities Before and After Augmentation

- High overall agreement (r ~ 0.9+)
- Augmentation models are quite similar
- Augmentation may compress utilities
- Threshold augmentation is slightly more conservative vs. grid augmentation

Pearson's *r* values (between mean betas):

	NoAug	ThresholdAug	FullGridAug
NoAug	1.000		
ThresholdAug	0.946	1.000	
FullGridAug	0.893	0.957	1.000

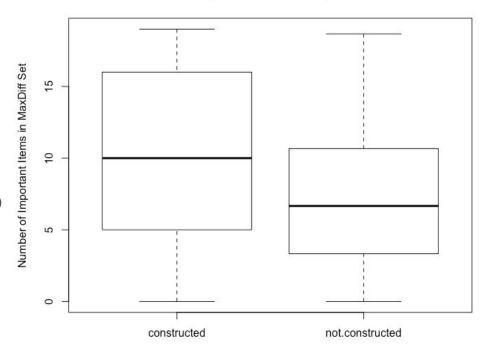


Results: 50% More "Important" Items in MaxDiff

2nd study compared construction vs. non-constructed MaxDiff:

- Constructed MD study:
 - 30 items in survey
 - o 20 items in MaxDiff exercise
- Without construction, we'd randomly select 20 of 30 items into MaxDiff exercise
- With construction, we emphasize "important" items

Construction Gives Respondents More 'Important' Items in MaxDiff



Results: Respondent and Executive Feedback

Respondent feedback

- "Format of this survey feels much easier"
- "Shorter and easier to get through."
- "this time around it was a lot quicker."
- "Thanks so much for implementing the 'is this important to you' section! Awesome stuff!"

Executive support

- Funding for internal tool development
- Advocacy across product areas
- Support for teaching 10+ classes on MaxDiff, 100+ registrants

Discussion

Design Recommendations

Initial rating for entire list of items, used to construct MaxDiff list

Risk: Difficult to answer long list of "what's relevant"

Solution: Break into chunks; ask a subset at a time; aggregate

Could chunk within a page (as shown), or several pages.

Construction of the MaxDiff list

Risk: Items might be never selected ⇒ degenerate model

Solution: Add 1-3 random items to the constructed list

We used: 12 "relevant and important to me" +

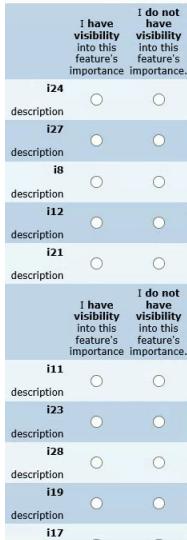
1 "not relevant to me" + 2 "not important"

⇒ MaxDiff design with 15 items on constructed list

Optional aspects: Screening for "not relevant" items

Including "not relevant" item(s) in tasks

Augmentation



Open Topics (1)

If respondents select the items to rate, what does "population" mean?
 Carefully consider what "best" and "worst" mean to you.

Want: share of preference among **overall population**? ⇒ don't construct

... *or*: share of preference among **relevant subset**? ⇒ construct

- Appropriate number of items -- if any -- to include randomly to ensure coverage
 We decided on 1 "not relevant" and 2 "not important", but that is a guess.

 Idea: Select tasks that omit those items, re-estimate, look at model stability.
- The best way to express the "Relevant to you?" and "Important to you?" ratings
 This needs careful pre-testing for appropriate wording of the task.

Open Topics (2)

- Construct separation, collinearity/endogeneity of relevance and importance
 Have seen evidence of high correlation in some cases; modest in others.
 Suspect dependence related to both domain and sample characteristics.
- Minimum # of relevant items needed in MD exercise?
 Model errors may be large if respondents differ greatly in # of relevant items.
 Suggest pre-testing to determine # of items to bring into the MD task.
- What if a P selects fewer than minimum # of relevant items?
 Two options: (1) usually: go ahead with MD and randomly selected tasks. (2) potentially: stack-rank exercise instead, create corresponding MD tasks (but: possibly overly coherent responses; endogeneity with item selection).

Demonstration of R Code

Referenced functions available at https://github.com/cnchapman/choicetools

Features of the R Code

Data sources: Sawtooth Software (CHO file) ⇒ Common format

Qualtrics (CSV file) ⇒ Common format

Given the common data format:

⇒ Estimation: Aggregate logit (using mlogit)

Hierarchical Bayes (using ChoiceModelR)

⇒ Augmentation: Optionally augment data for "not important" implicit choices

⇒ Plotting: Plot routines for aggregate logit + upper- & lower-level HB

Example R Code: Complete Example

```
> md.define.saw <- list(</pre>
                                                     # define the study, e.g.:
   md.item.k = 33,
                                                # K items on list
   md.item.tasks = 10,
                                                 # num tasks (*more omitted)
. . . * )
> test.read <- read.md.cho(md.define.saw) # convert CHO file
> md.define.saw$md.block <- test.read$md.block # save the data
> test.aug <- md.augment(md.define.saw)</pre>
                                                     # augment the choices
> md.define.saw$md.block <- test.aug$md.block</pre>
                                                     # update data
> test.hb <- md.hb(md.define.saw, mcmc.iters=50000) # HB estimation
> md.define.saw$md.hb.betas.zc <- test.hb$md.hb.betas.zc # get ZC diffs
> plot.md.range(md.define.saw, item.disguise=TRUE) # plot upper-level ests
> plot.md.indiv(md.define.saw, item.disquise=TRUE) +
                                                     # plot lower-level ests
    theme minimal()
                                                      # plots = gqplot2 objects
```

Example R Code, Part 0: Define the Study

```
> md.define.saw <- list(
          md.item.k = 33,
          md.item.tasks = 10,
...)</pre>
```

```
# define the study, e.g.:
# K items on list
# num of tasks
```

Example R Code, Part 1: Data

Example R Code, Part 2: Augmentation

```
> md.define.saw$md.block <- test.read$md.block # save the data
> test.aug <- md.augment(md.define.saw)</pre>
                                                     # augment the choices [optional]
Reading full data set to get augmentation variables.
Importants: 493 494 495 496 497 498 499 ...
Unimportants: 592 593 594 595 596 597 ...
Augmenting choices per 'adaptive' method.
Rows before adding: 40700
Augmenting adaptive data for respondent:
  augmenting: 29 16 25 20 23 9 22 12 5 27 6 11 10 4 26 1 15 2 14 24 31 7 30
13 18 19 3 8 28 21 32 8*8 33 17 ...
Rows after augmenting data: 75640
                                                # <== 1.8X data, 1x cost!
> md.define.saw$md.block <- test.aug$md.block</pre>
                                                     # update data with new choices
```

Example R Code, Part 3: HB

```
> md.define.saw$md.block <- test.aug$md.block  # update data with new choices
> test.hb <- md.hb(md.define.saw, mcmc.iters=50000) # HB</pre>
```

MCMC Iteration Beginning...

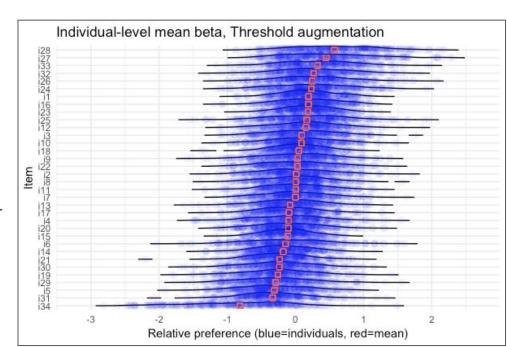
Iteration	Acceptance	RLH	Pct. Cert.	Avg. Var.	RMS	Time to End
100	0.339	0.483	0.162	0.26	0.31	83:47
200	0.308	0.537	0.284	0.96	0.84	81:50

> md.define.saw\$md.hb.betas.zc <- test.hb\$md.hb.betas.zc # zero-centered diffs

Example R Code: Plots



Example R Code: Plots



Conclusions

- Higher quality data
 - Respondents were asked for MaxDiff input on more items that were relevant to them
- Better usage of data that respondents provided
 - We've observed 1.8 3.5x as many implicit choice tasks with augmented data
- Happier respondents
 - MaxDiff items were more relevant.
 - We asked fewer MaxDiff questions because we could augment
- Use the code! Now an R package at GitHub as "cnchapman/choicetools"
 - o For *choice-based conjoint* analysis, see UseR! 2019 presentation: http://bit.ly/2RO51fg

Thank you!

Constructed, Augmented MaxDiff: camd@google.com